The present study investigated comprehensively the atmospheric occurrence and fate of an extensive range of polychlorinated biphenyls (PCBs; forty-two congeners), organochlorine pesticides (OCPs; twenty-seven emerging and legacy agrochemicals) and polycyclic aromatic hydrocarbons (PAHs; fifty parent and alkylated members, including the non USEPA-16 listed toxic ones), in both gas and particulate phase of the scarcely monitored atmosphere over Cyprus for the first time. Parent-metabolite concentration ratios suggested fresh application for dichlorodiphenyl-trichloroethanes (DDTs), dicofol, hexachlorocyclohexanes, endosulfan and chlorothalonil, particularly during spring (April-May). Regressions of logarithms of partial pressure against ambient temperature revealed that secondary recycling from contaminated terrestrial surfaces regulates the atmospheric level variability of PCBs, DDTs, aldrin, chlordane, dicofol, heptachlor and endosulfan. Enthalpies of surface-air exchange (∆HSA) calculated from Clausius-Clapeyron equations were significantly correlated to vaporization enthalpies (∆HV) determined by chromatographic techniques, corroborating presence of potential stockpile-contaminated sites around the study area. The Harner-Bidleman equilibrium model simulating urban areas, and the Li-Jia empirical model, predicted better the partitioning behavior of PAHs (<four-ring parent and alkylated members), PCBs (<hexa-chlorobiphenyls), and OCPs, respectively. For heavier PAHs and PCBs, partitioning coefficients (KP) were inadequately predicted by the Li-Ma-Yang steady-state model, probably due to local human activities and regional transport in the study area.
Keywords: Clausius-Clapeyron plots; Empirical model; PAHs; POPs; Steady-state model; ΔH(SA).
Copyright © 2022 Elsevier B.V. All rights reserved.