Molecular mechanism for strengthening E-cadherin adhesion using a monoclonal antibody

Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2204473119. doi: 10.1073/pnas.2204473119. Epub 2022 Aug 3.

Abstract

E-cadherin (Ecad) is an essential cell-cell adhesion protein with tumor suppression properties. The adhesive state of Ecad can be modified by the monoclonal antibody 19A11, which has potential applications in reducing cancer metastasis. Using X-ray crystallography, we determine the structure of 19A11 Fab bound to Ecad and show that the antibody binds to the first extracellular domain of Ecad near its primary adhesive motif: the strand-swap dimer interface. Molecular dynamics simulations and single-molecule atomic force microscopy demonstrate that 19A11 interacts with Ecad in two distinct modes: one that strengthens the strand-swap dimer and one that does not alter adhesion. We show that adhesion is strengthened by the formation of a salt bridge between 19A11 and Ecad, which in turn stabilizes the swapped β-strand and its complementary binding pocket. Our results identify mechanistic principles for engineering antibodies to enhance Ecad adhesion.

Keywords: 19A11; E-cadherin; adhesion; antibody; strand–swap dimer.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antibodies, Monoclonal* / chemistry
  • Cadherins* / chemistry
  • Cadherins* / immunology
  • Cell Adhesion*
  • Crystallography, X-Ray
  • Humans
  • Microscopy, Atomic Force
  • Molecular Dynamics Simulation
  • Protein Domains

Substances

  • Antibodies, Monoclonal
  • Cadherins