Cathepsin B is a lysosomal protease that participates in protein degradation. However, cathepsin B is also active under neutral pH conditions of the cytosol, nuclei, and extracellular locations. The dipeptidyl carboxypeptidase (DPCP) activity of cathepsin B, assayed with the Abz-GIVR↓AK(Dnp)-OH substrate, has been reported to display an acidic pH optimum. In contrast, the endopeptidase activity, monitored with Z-RR-↓AMC, has a neutral pH optimum. These observations raise the question of whether other substrates can demonstrate cathepsin B DPCP activity at neutral pH and endopeptidase activity at acidic pH. To address this question, global cleavage profiling of cathepsin B with a diverse peptide library was conducted under acidic and neutral pH conditions. Results revealed that cathepsin B has (1) major DPCP activity and modest endopeptidase activity under both acidic and neutral pH conditions and (2) distinct pH-dependent amino acid preferences adjacent to cleavage sites for both DPCP and endopeptidase activities. The pH-dependent cleavage preferences were utilized to design a new Abz-G