Formaldehyde (FA) serves as a prevailing air pollutant, which has seriously threatened public health in recent years. Of all the known health effects, lung injury is one of the most severe risks. However, little is known about the circRNAs related molecular mechanism in the development of lung injury induced by FA. This study was designed to explore the potential roles of dysregulated circRNAs as well as its mechanism in FA-induced lung injury. In the present study, 24 male SD rats were exposed to formaldehyde (control, 0.5, 2.46 and 5 mg/m3) for 8 h per day for 8 weeks to induce lung injury. We used H&E staining to evaluate the histopathological changes of lung injury indifferent groups. The expression of circRNAs in lung tissue was detected by real-time PCR. Meanwhile, circRNA/miRNA/mRNA interaction networks were predicted by bioinformatics analysis. Our study revealed that formaldehyde exposure resulted in abnormal histopathological changes in lung tissues. Moreover, the expression of rno_circRNA_008646 was significantly higher in lung tissues of formaldehyde exposure rats than in control. Bioinformatics analysis showed that one potential target miRNA/mRNA for rno_circRNA_008646 was rno-miR-224/Forkhead Box I1 (FOXI1). Besides, luciferase report gene confirmed that there was targeted binding relationship between rno_circRNA_008646 and rno-miR-224, rno-miR-224 and FOXI1. Further verification experiments indicated that the expression of rno_circRNA_008646 was negatively correlated rno-miR-224, while it was positively correlated with FOXI1. JASPAR database showed transcription factor FOXI1 located in promotor of CF Transmembrane Conductance Regulator (CFTR). Both FOXI1 and CFTR were up-regulated in lung tissues after formaldehyde exposure. In conclusion, our findings suggested that formaldehyde may induce lung injury, and this may be caused by up-regulatedrno_circRNA_008646, which medicated rno-miR-224/FOXI1/CFTR axis.
Keywords: CFTR; FOXI1; Formaldehyde; Lung injury; Rno-miR-224; Rno_circRNA_008646.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.