Aims: To use pre-treatment magnetic resonance imaging-based radiomics data with clinical data to predict radiation-induced temporal lobe injury (RTLI) in nasopharyngeal carcinoma (NPC) patients with stage T4/N0-3/M0 within 5 years after radiotherapy.
Materials and methods: This study retrospectively examined 98 patients (198 temporal lobes) with stage T4/N0-3/M0 NPC. Participants were enrolled into a training cohort or a validation cohort in a ratio of 7:3. Radiomics features were extracted from pre-treatment magnetic resonance imaging that were T1-and T2-weighted. Spearman rank correlation, the t-test and the least absolute shrinkage and selection operator (LASSO) algorithm were used to select significant radiomics features; machine-learning models were used to generate radiomics signatures (Rad-Scores). Rad-Scores and clinical factors were integrated into a nomogram for prediction of RTLI. Nomogram discrimination was evaluated using receiver operating characteristic analysis and clinical benefits were evaluated using decision curve analysis.
Results: Participants were enrolled into a training cohort (n = 139) or a validation cohort (n = 59). In total, 3568 radiomics features were initially extracted from T1-and T2-weighted images. Age, Dmax, D1cc and 16 stable radiomics features (six from T1-weighted and 10 from T2-weighted images) were identified as independent predictive factors. A greater Rad-Score was associated with a greater risk of RTLI. The nomogram showed good discrimination, with a C-index of 0.85 (95% confidence interval 0.79-0.92) in the training cohort and 0.82 (95% confidence interval 0.71-0.92) in the validation cohort.
Conclusion: We developed models for the prediction of RTLI in patients with stage T4/N0-3/M0 NPC using pre-treatment radiomics data and clinical data. Nomograms from these pre-treatment data improved the prediction of RTLI. These results may allow the selection of patients for earlier clinical interventions.
Keywords: MRI-based radiomics; T4/N0-3/M0 nasopharyngeal carcinoma; nomogram; temporal lobe injury.
Copyright © 2022 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.