Effects of short-term repeated sprint training in hypoxia or with blood flow restriction on response to exercise

J Physiol Anthropol. 2022 Sep 3;41(1):32. doi: 10.1186/s40101-022-00304-1.

Abstract

This study compared the effects of a brief repeated sprint training (RST) intervention performed with bilateral blood flow restriction (BFR) conditions in normoxia or conducted at high levels of hypoxia on response to exercise. Thirty-nine endurance-trained athletes completed six repeated sprints cycling sessions spread over 2 weeks consisting of four sets of five sprints (10-s maximal sprints with 20-s active recovery). Athletes were assigned to one of the four groups and subjected to a bilateral partial blood flow restriction (45% of arterial occlusion pressure) of the lower limbs during exercise (BFRG), during the recovery (BFRrG), exercised in a hypoxic room simulating hypoxia at FiO2 ≈ 13% (HG) or were not subjected to additional stress (CG). Peak aerobic power during an incremental test, exercise duration, maximal accumulated oxygen deficit and accumulated oxygen uptake (VO2) during a supramaximal constant-intensity test were improved thanks to RST (p < 0.05). No significant differences were observed between the groups (p > 0.05). No further effect was found on other variables including time-trial performance and parameters of the force-velocity relationship (p > 0.05). Thus, peak aerobic power, exercise duration, maximal accumulated oxygen deficit, and VO2 were improved during a supramaximal constant-intensity exercise after six RST sessions. However, combined hypoxic stress or partial BFR did not further increase peak aerobic power.

Keywords: Exercise training; Hypoxic training; Maximal oxygen consumption; Skeletal muscle; Vascular occlusion.

MeSH terms

  • Athletes
  • Hemodynamics
  • Humans
  • Hypoxia*
  • Oxygen
  • Oxygen Consumption*

Substances

  • Oxygen