Amino-Functionalized Titanate Nanotubes: pH and Kinetic Study of a Promising Adsorbent for Acid Dye in Aqueous Solution

Materials (Basel). 2022 Sep 15;15(18):6393. doi: 10.3390/ma15186393.

Abstract

This work reports the functionalization of sodium titanate nanotubes with amine groups obtained from the reaction of titanate nanotubes with [3-(2-Aminoethylamino)propyl]trimethoxysilane, NaTiNT-2NH, and 3-[2-(2-Aminoethylamino)ethylamino]propyltrimethoxysilane, NaTiNT-3NH. It was verified that the crystalline and morphological structures of NaTiNT were preserved after the functionalization, spectroscopies showed that aminosilane interacted covalently with the surface of NaTiNT, and the incorporation of the aminosilane groups on the surface of NaTiNT can be confirmed. The adsorbent matrices NaTiNT-2NH and NaTiNT-3NH were used to remove the anionic dye from remazol blue R (RB) in aqueous medium, and the highest adsorption capacity was around 365.84 mg g-1 (NaTiNT-2NH) and 440.70 mg g-1 (NaTiNT-3NH) in the range of pH 5.0 to 10.0 and the equilibrium time was reached in 210 min (NaTiNT-2NH) and 270 min (NaTiNT-3NH). Furthermore, the Elovich model, which reports the adsorption in heterogeneous sites and with different activation energies in the chemisorption process, was the most appropriate to describe the adsorption kinetics. Thus, these adsorbent matrices can be used as an alternative potential for dye removal RB in aqueous solution.

Keywords: adsorption; aminosilane; remazol blue R; titanate nanotubes.