From antenna to reaction center: Pathways of ultrafast energy and charge transfer in photosystem II

Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2208033119. doi: 10.1073/pnas.2208033119. Epub 2022 Oct 10.

Abstract

The photosystem II core complex (PSII-CC) is the smallest subunit of the oxygenic photosynthetic apparatus that contains core antennas and a reaction center, which together allow for rapid energy transfer and charge separation, ultimately leading to efficient solar energy conversion. However, there is a lack of consensus on the interplay between the energy transfer and charge separation dynamics of the core complex. Here, we report the application of two-dimensional electronic-vibrational (2DEV) spectroscopy to the spinach PSII-CC at 77 K. The simultaneous temporal and spectral resolution afforded by 2DEV spectroscopy facilitates the separation and direct assignment of coexisting dynamical processes. Our results show that the dominant dynamics of the PSII-CC are distinct in different excitation energy regions. By separating the excitation regions, we are able to distinguish the intraprotein dynamics and interprotein energy transfer. Additionally, with the improved resolution, we are able to identify the key pigments involved in the pathways, allowing for a direct connection between dynamical and structural information. Specifically, we show that C505 in CP43 and the peripheral chlorophyll ChlzD1 in the reaction center are most likely responsible for energy transfer from CP43 to the reaction center.

Keywords: charge separation; energy transfer; photosystem II; ultrafast spectroscopy.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chlorophyll* / metabolism
  • Energy Transfer
  • Photosynthesis
  • Photosystem II Protein Complex* / metabolism
  • Spectrum Analysis

Substances

  • Photosystem II Protein Complex
  • Chlorophyll