Smart Modulators Based on Electric Field-Triggering of Surface Plasmon-Polariton for Active Plasmonics

Nanomaterials (Basel). 2022 Sep 27;12(19):3366. doi: 10.3390/nano12193366.

Abstract

Design and properties of a plasmonic modulator in situ tunable by electric field are presented. Our design comprises the creation of periodic surface pattern on the surface of an elastic polymer supported by a piezo-substrate by excimer laser irradiation and subsequent selective coverage by silver by tilted angle vacuum evaporation. The structure creation was confirmed by AFM and FIB-SEM techniques. An external electric field is used for fine control of the polymer pattern amplitude, which tends to decrease with increasing voltage. As a result, surface plasmon-polariton excitation is quenched, leading to the less pronounced structure of plasmon response. This quenching was checked using UV-Vis spectroscopy and SERS measurements, and confirmed by numerical simulation. All methods prove the proposed functionality of the structures enabling the creation smart plasmonic materials for a very broad range of advanced optical applications.

Keywords: LIPSS; SERS; modification; nanostructures; plasmon excitation; polymer; sensor; smart materials; thin layers.

Grants and funding

This research was funded by the Czech Science Foundation (GACR) under the project No. 20-01639S and OP VVV Project NANOTECH ITI II. No. CZ.02.1.01/0.0/0.0/18_069/0010045.