Reliable preclinical drug testing models for cancer research are urgently needed with zebrafish embryo models emerging as a powerful vertebrate model for xenotransplantation studies. Here, we describe the evaluation of toxicity, efficacy, and on-target activity of histone deacetylase (HDAC) inhibitors in a zebrafish embryo yolk sac xenotransplantation model of medulloblastoma and neuroblastoma cells. For this, we performed toxicity assays with our zebrafish drug library consisting of 28 clinically relevant targeted as well as chemotherapeutic drugs with zebrafish embryos. We further engrafted zebrafish embryos with fluorescently labeled pediatric tumor cells (SK-N-BE(2)-C, HD-MB03, or MED8A) and monitored the progression after HDAC inhibitor treatment of xenotransplanted tumors through tumor volume measurements with high-content confocal microscopy in a multi-well format. The on-target activity of HDAC inhibitors was verified through immunohistochemistry staining on paraffin-embedded early larvae. Overall, the zebrafish embryo xenotransplantation model allows for fast and cost-efficient in vivo evaluation of targeted drug toxicity, efficacy, and on-target activity in the field of precision oncology.
Keywords: Functional precision medicine; Pediatric oncology; Targeted therapy; zPDX.
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.