Vascular smooth muscle cells (SMCs) are heterogeneous, and their differential responses to vascular injury are not well understood. To address this question, we performed single-cell analysis of vascular cells to a ligation injury in mouse carotid arteries after 3 days. While endothelial cells had a homogeneous activation of mesenchymal genes, less than 30% of SMCs responded to the injury and generated 2 distinct clusters - i.e., proinflammatory SMCs and stress-responsive SMCs. Proinflammatory SMCs were enriched with high levels of inflammatory markers such as vascular cell adhesion molecule-1 while stress-responsive SMCs overexpressed heat shock proteins. Trajectory analysis suggested that proinflammatory SMCs were potentially derived from a specific subpopulation of SMCs. Ligand-receptor pair analysis showed that the interaction between macrophages and proinflammatory SMCs was the major cell-cell communication among all cell types in the injured arteries. In vitro coculture demonstrated that VCAM1+ SMCs had a stronger chemotactic effect on macrophage recruitment than VCAM1- SMCs. Consistently, the number of VCAM1+ SMCs significantly increased in injured arteries and atherosclerotic lesions of ApoE-/- mice and human arteries. These findings provide insights at the single-cell level on the distinct patterns of endothelial cells and SMC responses to vascular injury.
Keywords: Cardiovascular disease; Vascular Biology.