Development of Two-Layer Hybrid Scaffolds Based on Oxidized Polyvinyl Alcohol and Bioactivated Chitosan Sponges for Tissue Engineering Purposes

Int J Mol Sci. 2022 Oct 11;23(20):12059. doi: 10.3390/ijms232012059.

Abstract

Oxidized polyvinyl alcohol (OxPVA) is a new polymer for the fabrication of nerve conduits (NCs). Looking for OxPVA device optimization and coupling it with a natural sheath may boost bioactivity. Thus, OxPVA/chitosan sponges (ChS) as hybrid scaffolds were investigated to predict in the vivo behaviour of two-layered NCs. To encourage interaction with cells, ChS were functionalized with the self-assembling-peptide (SAP) EAK, without/with the laminin-derived sequences -IKVAV/-YIGSR. Thus, ChS and the hybrid scaffolds were characterized for mechanical properties, ultrastructure (Scanning Electron Microscopy, SEM), bioactivity, and biocompatibility. Regarding mechanical analysis, the peptide-free ChS showed the highest values of compressive modulus and maximum stress. However, among +EAK groups, ChS+EAK showed a significantly higher maximum stress than that found for ChS+EAK-IKVAV and ChS+EAK-YIGSR. Considering ultrastructure, microporous interconnections were tighter in both the OxPVA/ChS and +EAK groups than in the others; all the scaffolds induced SH-SY5Y cells' adhesion/proliferation, with significant differences from day 7 and a higher total cell number for OxPVA/ChS+EAK scaffolds, in accordance with SEM. The scaffolds elicited only a slight inflammation after 14 days of subcutaneous implantation in Balb/c mice, proving biocompatibility. ChS porosity, EAK 3D features and neuro-friendly attitude (shared with IKVAV/YIGSR motifs) may confer to OxPVA certain bioactivity, laying the basis for future appealing NCs.

Keywords: chitosan sponges; hybrid scaffolds; mechanical analysis; nerve conduits; nerve regeneration; oxidized polyvinyl alcohol; peripheral nerve injury; self-assembling peptides.

MeSH terms

  • Animals
  • Biocompatible Materials
  • Chitosan* / chemistry
  • Humans
  • Laminin
  • Mice
  • Neuroblastoma*
  • Polymers / chemistry
  • Polyvinyl Alcohol / chemistry
  • Porosity
  • Tissue Engineering
  • Tissue Scaffolds / chemistry

Substances

  • Polyvinyl Alcohol
  • Chitosan
  • Laminin
  • Polymers
  • Biocompatible Materials