In utero exposure to the Great Depression is reflected in late-life epigenetic aging signatures

Proc Natl Acad Sci U S A. 2022 Nov 15;119(46):e2208530119. doi: 10.1073/pnas.2208530119. Epub 2022 Nov 8.

Abstract

Research on maternal-fetal epigenetic programming argues that adverse exposures to the intrauterine environment can have long-term effects on adult morbidity and mortality. However, causal research on epigenetic programming in humans at a population level is rare and is often unable to separate intrauterine effects from conditions in the postnatal period that may continue to impact child development. In this study, we used a quasi-natural experiment that leverages state-year variation in economic shocks during the Great Depression to examine the causal effect of environmental exposures in early life on late-life accelerated epigenetic aging for 832 participants in the US Health and Retirement Study (HRS). HRS is the first population-representative study to collect epigenome-wide DNA methylation data that has the sample size and geographic variation necessary to exploit quasi-random variation in state environments, which expands possibilities for causal research in epigenetics. Our findings suggest that exposure to changing economic conditions in the 1930s had lasting impacts on next-generation epigenetic aging signatures that were developed to predict mortality risk (GrimAge) and physiological decline (DunedinPoAm). We show that these effects are localized to the in utero period specifically as opposed to the preconception, postnatal, childhood, or early adolescent periods. After evaluating endogenous shifts in mortality and fertility related to Depression-era birth cohorts, we conclude that these effects likely represent lower bound estimates of the true impacts of the economic shock on long-term epigenetic aging.

Keywords: Great Depression; aging; epigenetic aging; fetal programming.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aging / genetics
  • Child
  • DNA Methylation
  • Depression
  • Epigenesis, Genetic*
  • Epigenomics
  • Female
  • Humans
  • Prenatal Exposure Delayed Effects* / genetics