Nanotechnology is perhaps the most widely explored scientific domain in the current era. With the advent of NPs, revolutionary changes have been observed in various scientific disciplines. Among the NPs, ZnO-NPs are the center of contemplation owing to their biocompatible nature. These nanoparticles have been prepared using a number of techniques; however, biological methods are among the most popular synthesis approaches. The current research therefore reports the phyto-fabrication of ZnO-NPs mediated by Delphinium uncinatum root extract. The resulting NPs were subjected to standard characterization methods such fourier transformed infrared spectroscopy, X-ray diffraction and transmission electron microscopy. The resulting NPs are exploited to their possible antioxidant, antimicrobial, antidiabetic, cytotoxic, anti-inflammatory and anti-ageing potency. FTIR confirmed the capping of ZnO-NPs by a variety of phytochemicals. ZnO-NPs average size was approximately 30 nm. ZnO-NPs exhibited substantial bio-potency and proved to be highly biocompatible even at higher concentrations. ZnO-NPs revealed strong antimicrobial potency for Pseudomonas aeruginosa proving to be the most susceptible strain showing inhibition of 16 ± 0.98. ZnO-NPs also showed dose dependent antidiabetic and cytotoxic potential. COX-1, COX-2, 15-LOX and sPLA2 were efficiently inhibited upon exposure to ZnO-NPs confirming the anti-inflammatory potential of ZnO-NPs. Similarly, ZnO-NPs also revealed considerable anti-aging potential. With such diverse biological potentials, ZnO-NPs can prove to be a potent weapon against a plethora of diseases; however, further study is necessary in order to discover the precise mechanism that is responsible for the biological potency of these NPs.
Keywords: Anti-aging activities; Anti-diabetic activities; Antimicrobial assays; Antioxidant activities; Cytotoxic activities; Delphinium uncinatum; ZnNPs.
© 2022 The Author(s).