Three-Dimensional Nanopillar Arrays-Based Efficient and Flexible Perovskite Solar Cells with Enhanced Stability

Nano Lett. 2022 Dec 14;22(23):9586-9595. doi: 10.1021/acs.nanolett.2c03694. Epub 2022 Nov 17.

Abstract

Perovskite nanopillars (PNPs) are propitious candidates for solar irradiation harvesting and are potential alternatives to thin films in flexible photovoltaics. To realize efficient daily energy output, photovoltaics must absorb sunlight over a broad range of incident angles and wavelengths congruent with the solar spectrum. Herein, we report highly periodic three-dimensional (3D) PNP-based flexible photovoltaics possessing a core-shell structure. The vertically aligned PNP arrays demonstrate up to 95.70% and 75.10% absorption at peak and under an incident angle of 60°. The efficient absorption and the orthogonal carrier collection facilitate an external quantum efficiency of 84.0%-89.18% for broadband wavelength. PNPs have been successfully implemented in flexible solar cells. The porous alumina membrane protects PNPs against water and oxygen intrusion and thereby imparts robustness to photovoltaic devices. Meanwhile, the excellent tolerance to mechanical stress/strain enables our unique PNP-based device to provide efficient solar-to-electricity conversion while undergoing mechanical bending.

Keywords: Flexible Devices; Nanowires; Perovskite; Solar Cell.