Renal injury and the development of albuminuria are tightly connected with the loss of podocytes. Podocyte damages cause proteinuric renal diseases since podocyte foot processes (FP) and their interposed slit diaphragms (SD) are the final barriers against protein loss. Podocyte effacement and the resultant deterioration of podocyte SD integrity that involve the active rearrangement of the podocyte actin cytoskeleton is a chief mechanism of proteinuric kidney diseases. The progress of these injuries can eventually lead to cell detachment and death. Due to the prominence of the actin cytoskeleton in maintaining glomerular filtration, the assessment of the molecular design and regulation of actin is a central target of podocyte research. In the current review, a comprehensive summary of the actin cytoskeleton, its constituents, and regulatory signaling pathways has been provided. Since actin-regulated cell plasticity is a crucial feature of normal podocyte function, and deteriorations in its dynamics seem to directly affect podocyte morphology and glomerular permeability, this review discusses cascades that regulate actin polymerization in podocytes.
Keywords: Actin; Aging; Cytoskeleton; Mitochondria; Podocyte.
Copyright © 2022 The Authors. Published by Elsevier Masson SAS.. All rights reserved.