Background: Neoadjuvant chemoradiotherapy (neoCRT) followed by surgery is the most common approach for locally advanced resectable esophageal squamous cell carcinoma (ESCC) patients. How neoCRT impacts ESCC tumor immune microenvironment (TIME) has not been fully understood.
Methods: Single-cell RNA sequencing (scRNA-seq) was conducted to examine the neoCRT-driven cellular and molecular dynamics in 8 pre- and 7 post-neoCRT ESCC samples from 8 male patients.
Findings: scRNA-seq data of about 112,000 cells were obtained. Expression programs of cell cycle, epithelium development, immune response, and extracellular structure in pre-treatment tumor cells were related to neoCRT response. Spearman correlation between CD8+ T cells' cytotoxicity and expression of checkpoint molecules was prominent in pre-neoCRT intermediate activated/exhausted CD8+ T cells. NeoCRT increased CD8+ T cells' infiltration but promoted their exhaustion in both major and minor responders. NeoCRT promoted differentiation of Th but demoted that of Treg cells in major responders. Maturation of cDC1s and expression of M2 macrophage markers increased while the number of cDC2s decreased after neoCRT. Higher activities of immune-related pathways in pre-neoCRT CD8+ T cells and macrophages, as well as a pronounced decrease of them after neoCRT, correlated with better neoCRT response. Interactions between intermediate activated/exhausted CD8+ T and macrophages, cDC1s, and LAMP3+ cDCs decreased after neoCRT.
Interpretation: Our comprehensive picture of the neoCRT-related immune changes provides deeper insights into immunological mechanisms associated with ESCC response to neoCRT, which may aid in future development of immune-strategies for improving ESCC treatment.
Funding: This work was supported by the National Natural Science Foundation of China (82072607).
Keywords: Esophageal squamous cell carcinoma; Neoadjuvant chemoradiotherapy; Single-cell RNA sequencing; Tumor microenvironment.
Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.