Neuropeptide Y (NPY) and its receptors are expressed in various human tissues including the brain where they regulate appetite and emotion. Upon NPY stimulation, the neuropeptide Y1 and Y2 receptors (Y1R and Y2R, respectively) activate GI signaling, but their physiological responses to food intake are different. In addition, deletion of the two N-terminal amino acids of peptide YY (PYY(3-36)), the endogenous form found in circulation, can stimulate Y2R but not Y1R, suggesting that Y1R and Y2R may have distinct ligand-binding modes. Here, we report the cryo-electron microscopy structures of the PYY(3-36)‒Y2R‒Gi and NPY‒Y2R‒Gi complexes. Using cell-based assays, molecular dynamics simulations, and structural analysis, we revealed the molecular basis of the exclusive binding of PYY(3-36) to Y2R. Furthermore, we demonstrated that Y2R favors G protein signaling over β-arrestin signaling upon activation, whereas Y1R does not show a preference between these two pathways.
Keywords: G protein signaling; G protein-coupled receptor; cryo-electron microscopy structure; neuropeptide Y; neuropeptide Y receptors; peptide YY; β-arrestin signaling.
Copyright © 2022 Elsevier Ltd. All rights reserved.