Ce3+, Pr3+ co-doped Lu3Al5O12 (Ce, Pr:LuAG) single crystals and ceramics were prepared using the optical floating zone (OFZ) and reactive vacuum sintering methods, respectively. The microstructure, photo- (λex = 450 nm), and radio-luminescence (under X-ray excitation) performance, as well as scintillation light yield (LY, under γ-ray, 137Cs source) of both materials, were investigated and compared. Ce, Pr:LuAG ceramics had an in-line transmittance of approximately 20% in the visible light range, while the analogous crystals were more transparent (~65%). The X-ray excited luminescent (XEL) spectra showed the characteristic Ce 3+ and Pr3+ emissions located at 310 nm, 380 nm, and 510 nm. The highest LY of the Ce, Pr:LuAG ceramics reached 34,112 pho/MeV at 2 μs time gate, which is higher than that of a single crystal. The ratio of LY values (LY2/LY0.75) between shaping times of 0.75 μs and 2 μs indicated a faster scintillation decay of ceramics regarding single crystals. It was ascribed to the lower effective concentration of luminescent activators in single crystals because of the coefficient segregation effect.
Keywords: Ce; Pr:LuAG; garnet; optical floating zone method; scintillator ceramics; single crystals.