Although CRISPR/Cas9 has been widely used to generate knockout mice, two major limitations remain: the founders usually carry a mixture of genotypes, and mosaicism harboring multiple genotypes. Therefore, it takes a long time to get homozygous mutants. Recently developed base editing (BE) system, which introduces C-to-T conversion without double strand DNA cleavage, has been used to introduce artificial stop codons (i-STOP) to prematurely terminate translation, providing a cleaner strategy for genome engineering. Using this strategy, we generated CD160 KO and VISTA/CD160 double KO mice by microinjection of a single sgRNA targeting CD160 and a mixture of sgRNAs targeting VISTA and CD160, respectively. The BE system induced STOP efficiently in mouse embryos and consequently in founder mice without detectable off-target. Most interestingly, the majority of the mutants harbor same genetic modifications, indicating we generated isogenic single and multiplex gene mutant mice by BE-induced STOP. We also obtained homozygous mutant mouse in F1 mice, demonstrating the accelerated strategy in generating animal models.
Keywords: Base editing; CD160; Isogenic; Knockout; VISTA; i-STOP.
Copyright © 2018. Published by Elsevier B.V.