Identification of the Time Period during Which BMP Signaling Regulates Proliferation of Neural Progenitor Cells in Zebrafish

Int J Mol Sci. 2023 Jan 15;24(2):1733. doi: 10.3390/ijms24021733.

Abstract

Bone morphogenetic protein (BMP) signaling regulates neural induction, neuronal specification, and neuronal differentiation. However, the role of BMP signaling in neural progenitors remains unclear. This is because interruption of BMP signaling before or during neural induction causes severe effects on subsequent neural developmental processes. To examine the role of BMP signaling in the development of neural progenitors in zebrafish, we bypassed the effect of BMP signaling on neural induction and suppressed BMP signaling at different time points during gastrulation using a temporally controlled transgenic line carrying a dominant-negative form of Bmp receptor type 1aa and a chemical inhibitor of BMP signaling, DMH1. Inhibiting BMP signaling from 8 hpf could bypass BMP regulation on neural induction, induce the number of proliferating neural progenitors, and reduce the number of neuronal precursors. Inhibiting BMP signaling upregulates the expression of the Notch downstream gene hairy/E(spl)-related 2 (her2). Inhibiting Notch signaling or knocking down the Her2 function reduced neural progenitor proliferation, whereas inactivating BMP signaling in Notch-Her2 deficient background restored the number of proliferating neural progenitors. These results reveal the time window for the proliferation of neural progenitors during zebrafish development and a fine balance between BMP and Notch signaling in regulating the proliferation of neural progenitor cells.

Keywords: BMP; Notch; neural progenitors; zebrafish.

MeSH terms

  • Animals
  • Bone Morphogenetic Proteins / genetics
  • Bone Morphogenetic Proteins / metabolism
  • Cell Proliferation
  • Gene Expression Regulation, Developmental
  • Neural Stem Cells* / metabolism
  • Zebrafish Proteins / genetics
  • Zebrafish Proteins / metabolism
  • Zebrafish* / genetics
  • Zebrafish* / metabolism

Substances

  • Zebrafish Proteins
  • Bone Morphogenetic Proteins