Oxylipins derived from the cyclooxygenase (COX) and lipoxygenase (LOX) pathways of the arachidonic acid (ARA) cascade are essential for the regulation of the inflammatory response and many other physiological functions. Comprehensive analytical methods comprised of oxylipin and protein abundance analysis are required to fully understand mechanisms leading to changes within these pathways. Here, we describe the development of a quantitative multi-omics approach combining liquid chromatography tandem mass spectrometry-based targeted oxylipin metabolomics and proteomics. As the first targeted proteomics method to cover these pathways, it enables the quantitative analysis of all human COX (COX-1 and COX-2) and relevant LOX pathway enzymes (5-LOX, 12-LOX, 15-LOX, 15-LOX-2, and FLAP) in parallel to the analysis of 239 oxylipins with our targeted oxylipin metabolomics method from a single sample. The detailed comparison between MRM3 and classical MRM-based detection in proteomics showed increased selectivity for MRM3, while MRM performed better in terms of sensitivity (LLOQ, 16-122 pM vs. 75-840 pM for the same peptides), linear range (up to 1.5-7.4 μM vs. 4-368 nM), and multiplexing capacities. Thus, the MRM mode was more favorable for this pathway analysis. With this sensitive multi-omics approach, we comprehensively characterized oxylipin and protein patterns in the human monocytic cell line THP-1 and differently polarized primary macrophages. Finally, the quantification of changes in protein and oxylipin levels induced by lipopolysaccharide stimulation and pharmaceutical treatment demonstrates its usefulness to study molecular modes of action involved in the modulation of the ARA cascade.
Keywords: Arachidonic acid cascade; Human macrophages; Liquid chromatography tandem mass spectrometry; Multiple reaction monitoring cubed; Targeted oxylipin metabolomics; Targeted proteomics.
© 2023. The Author(s).