Conventional and advanced detection approaches of fluoride in water: a review

Environ Monit Assess. 2023 Jan 24;195(2):325. doi: 10.1007/s10661-022-10888-x.

Abstract

Fluorine is a naturally occurring element found in soil, water, food materials, and natural minerals such as fluorapatite, sellaite, and cryolite and exists as fluoride compounds with other elements because of high reactivity. The exposure of fluoride to the environment and human beings are industrial factors, food, water, and geogenic factors that impact the health of millions of human beings worldwide. Overexposure to fluoride exceeding the permissible limit (1.5 mg/l as per WHO) causes several diseases in human beings, such as teeth mottling, thyroid inflammation, dental fluorosis, skeletal fluorosis, lesions in the kidney, and other organs. To overcome the deleterious impact of fluoride, its detection at an early stage is very much required. Therefore, feeling the importance of the same, immense efforts have been made to the selective and sensitive determination of fluoride in water by numerous researchers. This review paper summarizes the various conventional methods such as spectroscopic, ion chromatography, ICP-OES, and gas chromatography-mass spectrometry, their advantages, and drawbacks leading to the development of advanced ready-to-use detection strategies such as stamartphones for on-the-spot fluoride detection. This review paper also discusses future directions, which will assist scientists in achieving a new benchmark in developing a reliable, cost-effective, and user-friendly fluoride detector.

Keywords: Advanced techniques; Conventional methods; Electrochemical; Fluoride; Nanomaterials; Smartphone.

Publication types

  • Review

MeSH terms

  • Environmental Monitoring
  • Fluorides* / analysis
  • Fluorosis, Dental*
  • Humans
  • Water / analysis
  • Water Supply

Substances

  • Fluorides
  • Water