Background and objectives: Primary progressive multiple sclerosis (PPMS) displays a highly variable disease progression with a characteristic accumulation of disability, what makes difficult its diagnosis and efficient treatment. The identification of microRNAs (miRNAs)-based signature for the early detection in biological fluids could reveal promising biomarkers to provide new insights into defining MS clinical subtypes and potential therapeutic strategies. The objective of this cross-sectional study was to describe PPMS miRNA profiles in CSF and serum samples compared with other neurologic disease individuals (OND) and relapsing-remitting MS (RRMS).
Methods: First, a screening stage analyzing multiple miRNAs in few samples using OpenArray plates was performed. Second, individual quantitative polymerase chain reactions (qPCRs) were used to validate specific miRNAs in a greater number of samples.
Results: A specific profile of dysregulated circulating miRNAs (let-7b-5p and miR-143-3p) was found downregulated in PPMS CSF samples compared with OND. In addition, in serum samples, miR-20a-5p and miR-320b were dysregulated in PPMS against RRMS and OND, miR-26a-5p and miR-485-3p were downregulated in PPMS vs RRMS, and miR-142-5p was upregulated in RRMS compared with OND.
Discussion: We described a 2-miRNA signature in CSF of PPMS individuals and several dysregulated miRNAs in serum from patients with MS, which could be considered valuable candidates to be further studied to unravel their actual role in MS.
Classification of evidence: This study provides Class II evidence that specific miRNA profiles accurately distinguish PPMS from RRMS and other neurologic disorders.
Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.