Background: Lung adenocarcinoma (LUAD) is a major cause of cancer-related death worldwide, and the roles of complement-related genes in it have not been thoroughly investigated yet. In the study, we aimed to systemically examine the prognostic performance of complement-related genes, classify the patients into two different clusters and stratify the patients into different risk groups using a complement-related gene signature.
Methods: To achieve this, clustering analyses, Kaplan-Meier survival analyses, immune infiltration analyses were performed. LUAD patients from The Cancer Genome Atlas (TCGA) were classified into two subtypes (C1 and C2). A prognostic signature, consisting of four complement-related genes, was established using TCGA-LUAD cohort and validated in six Gene Expression Omnibus datasets and an independent cohort from our center.
Results: The prognosis of C2 patients is better than that of C1 patients and the prognosis of low risk patients is significantly better than high risk patients across the public datasets. In our cohort, the OS of patients in low risk group is better than that in high risk group but the difference is not significant. Patients with a lower risk score were characterized by a higher immune score, a higher level of BTLA, higher infiltration levels of T cells, B lineage, myeloid dendritic cells, neutrophils, endothelial cells, and a lower infiltration level of fibroblast.
Conclusions: In summary, our study has established a new classification method and developed a prognostic signature for LUAD, while future studies are needed for further exploration of the underlying mechanism.
Keywords: Complement; GEO; Gene signature; Lung adenocarcinoma; TCGA.
© 2023. The Author(s).