Shellfish, such as the Eastern oyster (Crassostrea virginica), are an important agricultural commodity. Previous research has demonstrated the importance of the native microbiome of oysters against exogenous challenges by non-native pathogens. However, the taxonomic makeup of the oyster microbiome and the impact of environmental factors on it are understudied. Research was conducted quarterly over a calendar year (February 2020 through February 2021) to analyze the taxonomic diversity of bacteria present within the microbiome of consumer-ready-to-eat live Eastern oysters. It was hypothesized that a core group of bacterial species would be present in the microbiome regardless of external factors such as the water temperature at the time of harvest or post-harvesting processing. At each time point, 18 Chesapeake Bay (eastern United States) watershed aquacultured oysters were acquired from a local grocery store, genomic DNA was extracted from the homogenized whole oyster tissues, and the bacterial 16S rRNA gene hypervariable V4 region was PCR-amplified using barcoded primers prior to sequencing via Illumina MiSeq and bioinformatic analysis of the data. A core group of bacteria were identified to be consistently associated with the Eastern oyster, including members of the phyla Firmicutes and Spirochaetota, represented by the families Mycoplasmataceae and Spirochaetaceae, respectively. The phyla Cyanobacterota and Campliobacterota became more predominant in relation to warmer or colder water column temperature, respectively, at the time of oyster harvest.
Copyright: © 2023 Hines et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.