The presence of Pseudomonas aeruginosa biofilms in cystic fibrosis (CF) patients suffering from chronic lung infections contributes to the failure of antimicrobial therapy. Conventionally, the minimal inhibitory concentration (MIC) is determined to assess the antimicrobial susceptibility of a pathogen, however this parameter fails to predict success in treating biofilm-associated infections. In the present study we developed a high throughput method to determine the antimicrobial concentration required to prevent P. aeruginosa biofilm formation, using a synthetic cystic fibrosis sputum medium (SCFM2). Biofilms were grown in SCFM2 for 24 h in the presence of antibiotics (tobramycin, ciprofloxacin or colistin), whereafter biofilms were disrupted and a resazurin staining was used to quantify the number of surviving metabolically active cells. In parallel, the content of all wells was plated to determine the number of colony forming units (CFU). Biofilm preventing concentrations (BPCs) were compared to MICs and minimal bactericidal concentrations (MBCs) determined according to EUCAST guidelines. Correlations between the resazurin-derived fluorescence and CFU counts were assessed with Kendall's Tau Rank tests. A significant correlation between fluorescence and CFU counts was observed for 9 out of 10 strains investigated, suggesting the fluorometric assay is a reliable alternative to plating for most P. aeruginosa isolates to determine biofilm susceptibility in relevant conditions. For all isolates a clear difference between MICs and BPCs of all three antibiotics was observed, with the BPCs being consistently higher than the MICs. Additionally, the extent of this difference appeared to be antibiotic-dependent. Our findings suggest that this high throughput assay could be a valuable addition to evaluate the antimicrobial susceptibility in P. aeruginosa biofilms in the context of CF.
© 2023 The Authors.