Crassostrea gigas oysters represent a significant global food source with 4.7 million tons harvested per year. In 2001, the bacterium Vibrio aestuarianus subsp. francensis emerged as a pathogen that causes adult oyster mortality in France and Ireland. Its impact on oyster aquaculture has increased in Europe since its re-emergence in 2012. To better understand the evolutionary mechanisms leading to the emergence and persistence over time of this pathogen, we conducted a survey of mollusc diseases through national reference laboratories across Europe. We analysed 54 new genomes of Vibrio aestuarianus (Va) isolated from multiple environmental compartments since 2001, in areas with and without bivalve mortalities. We used a combination of comparative genomics and population genetics approaches and show that Va has a classical epidemic population structure from which the pathogenic Va francensis subspecies emerged and clonally expanded. Furthermore, we identified a specific cus-cop-containing island conferring copper resistance to Va francensis whose acquisition may have favoured the emergence of pathogenic lineages adapted and specialized to oysters.
Keywords: adaptation; bacteria; clonal expansion; molecular evolution.
© 2023 Crown copyright. Molecular Ecology © 2023 John Wiley & Sons Ltd. This article is published with the permission of the Controller of HMSO and the King's Printer for Scotland.