Prevention of food spoilage, environmental bio-contamination, and pathogenic infections requires rapid and sensitive bacterial detection systems. Among microbial communities, the bacterial strain of Escherichia coli is most widespread, with pathogenic and non-pathogenic strains being biomarkers of bacterial contamination. Here, we have developed a fM-sensitive, simple, and robust electrocatalytically-amplified assay facilitating specific detection of E.coli 23S ribosomal rRNA, in the total RNA sample, after its site-specific cleavage by RNase H enzyme. Gold screen-printed electrodes (SPE) were electrochemically pre-treated to be productively modified with a methylene-blue (MB) - labelled hairpin DNA probes, which hybridization with the E. coli-specific DNA placed MB in the top region of the DNA duplex. The formed duplex acted as an electrical wire, mediating electron transfer from the gold electrode to the DNA-intercalated MB, and further to ferricyanide in solution, enabling its electrocatalytic reduction otherwise impeded on the hairpin-modified SPEs. The assay facilitated 20 min 1 fM detection of both synthetic E. coli DNA and 23S rRNA isolated from E.coli (equivalent to 15 CFU mL-1), and can be extended to fM analysis of nucleic acids isolated from any other bacteria.
Keywords: Chronocoulometry; DNA hairpin probes; Electrocatalysis; Genosensor; Gold Screen-printeed electrodes; Hybridization; Methylene blue; Ribosomal RNA; Single nucleotide polymorphism.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.