Low-coverage sequencing in a deep intercross of the Virginia body weight lines provides insight to the polygenic genetic architecture of growth: novel loci revealed by increased power and improved genome-coverage

Poult Sci. 2023 May;102(5):102203. doi: 10.1016/j.psj.2022.102203. Epub 2022 Oct 1.

Abstract

Genetic dissection of highly polygenic traits is a challenge, in part due to the power necessary to confidently identify loci with minor effects. Experimental crosses are valuable resources for mapping such traits. Traditionally, genome-wide analyses of experimental crosses have targeted major loci using data from a single generation (often the F2) with individuals from later generations being generated for replication and fine-mapping. Here, we aim to confidently identify minor-effect loci contributing to the highly polygenic basis of the long-term, bi-directional selection responses for 56-d body weight in the Virginia body weight chicken lines. To achieve this, a strategy was developed to make use of data from all generations (F2-F18) of the advanced intercross line, developed by crossing the low and high selected lines after 40 generations of selection. A cost-efficient low-coverage sequencing based approach was used to obtain high-confidence genotypes in 1Mb bins across 99.3% of the chicken genome for >3,300 intercross individuals. In total, 12 genome-wide significant, and 30 additional suggestive QTL reaching a 10% FDR threshold, were mapped for 56-d body weight. Only 2 of these QTL reached genome-wide significance in earlier analyses of the F2 generation. The minor-effect QTL mapped here were generally due to an overall increase in power by integrating data across generations, with contributions from increased genome-coverage and improved marker information content. The 12 significant QTL explain >37% of the difference between the parental lines, three times more than 2 previously reported significant QTL. The 42 significant and suggestive QTL together explain >80%. Making integrated use of all available samples from multiple generations in experimental crosses are economically feasible using the low-cost, sequencing-based genotyping strategies outlined here. Our empirical results illustrate the value of this strategy for mapping novel minor-effect loci contributing to complex traits to provide a more confident, comprehensive view of the individual loci that form the genetic basis of the highly polygenic, long-term selection responses for 56-d body weight in the Virginia body weight chicken lines.

Keywords: QTL mapping; advanced intercross line; body weight; low-coverage sequencing.

MeSH terms

  • Animals
  • Body Weight / genetics
  • Chickens / genetics
  • Chromosome Mapping / veterinary
  • Crosses, Genetic
  • Genome-Wide Association Study / veterinary
  • Multifactorial Inheritance*
  • Phenotype
  • Quantitative Trait Loci*
  • Virginia