Understanding the impact that combined action of marination and oven grill processes would have on such meat products as beef entrecôte is crucial from both consumer appeal and product development standpoints. Therefore, different marinated oven-grilled beef entrecôte meat specifically evaluating resultant physicochemical and organoleptic attributes were studied. The beef entrecôte meat was provided by a reputable local bovine farm/slaughter at Wroclaw, Poland. Physicochemical attributes involved antioxidant (2,2'-azinobis(3-ethylbenzothiaziline-6-sulfonate) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP)), (pH, thiobarbituric acid reactive substance (TBARS), cooking weight loss, L*a*b* color, and textural cutting force). Organoleptic attributes involved sensory (flavour, appearance, tenderness, taste) and texture (hardness, chewiness, gumminess, graininess, and greasiness) aspects. Different marination variants involved constituent 0.5%, 1%, and 1.5% quantities of cranberry pomace (CP), grape pomace (GP), and Baikal skullcap (BS), subsequently incorporated either African spice (AS) or industrial marinade/pickle (IM). Results showed pH, ABTS, DPPH, FRAP, TBARS, L*a*b* color, cooking weight loss, and textural cutting force, sensory and textural profile with varying range values. Concentration increases of either CP, GP, and or BS may not always go along with ABTS, DPPH, and FRAP values, given the observed decreasing or increasing fluctuations. As oven-grilling either increased or decreased the TBARS values alongside some color and textural cutting force trends, pH variations by difference seemed more apparent at samples involving GP, before CP, and then BS. The organoleptic attributes obtained differences and resemblances from both sensory and textural profile standpoints. Overall, oven-grilling promises to moderate both physicochemical and organoleptic range values of different marinated beef entrecôte meat samples in this study.
Keywords: Beef entrecôte; Herbs and spices; Marination; Product development; Thermal processing.
© 2023 Okpala et al.