Comparison of Online-Onboard Adaptive Intensity-Modulated Radiation Therapy or Volumetric-Modulated Arc Radiotherapy With Image-Guided Radiotherapy for Patients With Gynecologic Tumors in Dependence on Fractionation and the Planning Target Volume Margin

JAMA Netw Open. 2023 Mar 1;6(3):e234066. doi: 10.1001/jamanetworkopen.2023.4066.

Abstract

Importance: Patients with newly diagnosed locally advanced cervical carcinomas or recurrences after surgery undergoing radiochemotherapy whose tumor is unsuited for a brachytherapy boost need high-dose percutaneous radiotherapy with small margins to compensate for clinical target volume deformations and set-up errors. Cone-beam computed tomography-based online adaptive radiotherapy (ART) has the potential to reduce planning target volume (PTV) margins below 5 mm for these tumors.

Objective: To compare online ART technologies with image-guided radiotherapy (IGRT) for gynecologic tumors.

Design, setting, and participants: This comparative effectiveness study comprised all 7 consecutive patients with gynecologic tumors who were treated with ART with artificial intelligence segmentation from January to May 2022 at the West German Cancer Center. All adapted treatment plans were reviewed for the new scenario of organs at risk and target volume. Dose distributions of adapted and scheduled plans optimized on the initial planning computed tomography scan were compared.

Exposure: Online ART for gynecologic tumors.

Main outcomes and measures: Target dose coverage with ART compared with IGRT for PTV margins of 5 mm or less in terms of the generalized equivalent uniform dose (gEUD) without increasing the gEUD for the organs at risk (bladder and rectum).

Results: The first 10 treatment series among 7 patients (mean [SD] age, 65.7 [16.5] years) with gynecologic tumors from a prospective observational trial performed with ART were compared with IGRT. For a clinical PTV margin of 5 mm, IGRT was associated with a median gEUD decrease in the interfractional clinical target volume of -1.5% (90% CI, -31.8% to 2.9%) for all fractions in comparison with the planned dose distribution. Online ART was associated with a decrease of -0.02% (90% CI, -3.2% to 1.5%), which was less than the decrease with IGRT (P < .001). This was not associated with an increase in the gEUD for the bladder or rectum. For a PTV margin of 0 mm, the median gEUD deviation with IGRT was -13.1% (90% CI, -47.9% to 1.6%) compared with 0.1% (90% CI, -2.3% to 6.6%) with ART (P < .001). The benefit associated with ART was larger for a PTV margin of 0 mm than of 5 mm (P = .004) due to spreading of the cold spot at the clinical target volume margin from fraction to fraction with a median SD of 2.4 cm (90% CI, 1.9-3.4 cm) for all patients.

Conclusions and relevance: This study suggests that ART is associated with an improvement in the percentage deviation of gEUD for the interfractional clinical target volume compared with IGRT. As the gain of ART depends on fractionation and PTV margin, a strategy is proposed here to switch from IGRT to ART, if the delivered gEUD distribution becomes unfavorable in comparison with the expected distribution during the course of treatment.

Publication types

  • Observational Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Artificial Intelligence
  • Female
  • Genital Neoplasms, Female* / diagnostic imaging
  • Genital Neoplasms, Female* / radiotherapy
  • Humans
  • Radiotherapy Planning, Computer-Assisted / methods
  • Radiotherapy, Image-Guided* / methods
  • Radiotherapy, Intensity-Modulated* / methods