Incremental diagnostic value of perivascular fat attenuation index for identifying hemodynamically significant ischemia with severe calcification

Int J Cardiovasc Imaging. 2023 Jul;39(7):1323-1332. doi: 10.1007/s10554-023-02831-z. Epub 2023 Mar 24.

Abstract

Purpose: To explore the incremental value of perivascular fat attenuation index (FAI) to identify hemodynamically significant ischemia in severe calcified vessels.

Methods: Patients who underwent coronary computed tomographic angiography (CCTA) examination at Chinese PLA General Hospital from 2017 to 2020 and subsequently underwent fractional flow reserve (FFR) examination within 1 month were consecutively included. Several CCTA-derived indices were measured, including the coronary artery calcification score (CACS), lesion length, ≥CAD-RADS 4 proportion, perivascular FAI and CT-FFR. The included vessels were divided into a nonsevere calcification group and a severe calcification group according to the quartile of CACS. FFR ≤ 0.80 represents the presence of hemodynamically significant ischemia.

Results: A total of 124 patients with 152 vessels were included (age: 61.1 ± 9.2 years; male 64.5%). Significant differences in lesion length (28.4 ± 14.2 vs. 23.1 ± 12.3 mm, P = 0.021), perivascular FAI (-73.0 ± 7.5 vs. -79.0 ± 7.4 HU, P < 0.001) and CT-FFR (0.78 ± 0.06 vs. 0.86 ± 0.04, P < 0.001) were noted between the FFR ≤ 0.80 group (47 vessels) and the FFR > 0.80 group (105 vessels). Furthermore, the perivascular FAI in the FFR ≤ 0.80 group was significantly greater than that in the FFR > 0.80 group (nonsevere calcification: -73.2 ± 7.5 vs. -78.2 ± 7.4 HU, P = 0.002; severe calcification: -72.8 ± 7.7 vs. -82.7 ± 6.3 HU, P < 0.001). In discriminating hemodynamically significant ischemia, the specificity and accuracy of CT-FFR were significantly affected by severe calcification, which demonstrated a significantly declining trend (P = 0.033 and P = 0.010, respectively). The diagnostic performance of CT-FFR in the severe calcification group was lower than that in the nonsevere calcified group. However, perivascular FAI showed good discriminative performance in the severe calcification group. In combination with perivascular FAI, the predictive value of CT-FFR in identifying hemodynamically significant ischemia with severe calcification increased from an AUC of 0.740 to 0.919.

Conclusion: For coronary artery with severe calcification, the diagnostic performance of CT-FFR in discriminating flow-limiting lesions could be greatly impaired. Perivascular FAI represents a potential reliable imaging marker to provide incremental diagnostic value over CT-FFR for identifying hemodynamically significant ischemia with severe calcification.

Keywords: Adipose tissue; Calcification; Computed tomography angiography; Coronary artery disease; Fractional flow reserve.

MeSH terms

  • Adipose Tissue / diagnostic imaging
  • Aged
  • Computed Tomography Angiography / methods
  • Coronary Angiography / methods
  • Coronary Artery Disease* / diagnostic imaging
  • Coronary Stenosis*
  • Fractional Flow Reserve, Myocardial*
  • Humans
  • Ischemia
  • Male
  • Middle Aged
  • Predictive Value of Tests
  • Retrospective Studies
  • Vascular Calcification* / diagnostic imaging