Macrophages play an important role in the response to infection and/or repair of injury in tissues. To examine the NF-κB pathway in response to an inflammatory stimulus, we used wild-type bone-marrow-derived macrophages (BMDMs) or BMDMs with knockout (KO) of myeloid differentiation primary response 88 (MyD88) and/or Toll/interleukin-1 receptor domain-containing adapter-inducing interferon-β (TRIF) via CRISPR/Cas9. Following treatment of BMDMs with lipopolysaccharide (LPS) to induce an inflammatory response, translational signalling of NF-κB was quantified via immunoblot and cytokines were measured. Our findings reveal that MyD88 KO, but not TRIF KO, decreased LPS-induced NF-κB signalling, and 10% expression of basal MyD88 expression was sufficient to partially rescue the abolished inflammatory cytokine secretion observed upon MyD88 KO.
Keywords: CRISPR/Cas9; TLR4; bonemarrow-derived macrophages; inflammation; interleukin-10; tumour necrosis factor.
© 2023 Federation of European Biochemical Societies.