(1) Background: Cancer antigen 125 (CA-125) is a protein produced by ovarian cancer cells that is used for patients' monitoring. However, the best ways to analyze its decline and prognostic role are poorly quantified. (2) Methods: We leveraged individual patient data from the Gynecologic Cancer Intergroup (GCIG) meta-analysis (N = 5573) to compare different approaches summarizing the early trajectory of CA-125 before the prediction time (called the landmark time) at 3 or 6 months after treatment initiation in order to predict overall survival. These summaries included observed and estimated measures obtained by a linear mixed model (LMM). Their performances were evaluated by 10-fold cross-validation with the Brier score and the area under the ROC (AUC). (3) Results: The estimated value and the last observed value at 3 months were the best measures used to predict overall survival, with an AUC of 0.75 CI 95% [0.70; 0.80] at 24 and 36 months and 0.74 [0.69; 0.80] and 0.75 [0.69; 0.80] at 48 months, respectively, considering that CA-125 over 6 months did not improve the AUC, with 0.74 [0.68; 0.78] at 24 months and 0.71 [0.65; 0.76] at 36 and 48 months. (4) Conclusions: A 3-month surveillance provided reliable individual information on overall survival until 48 months for patients receiving first-line chemotherapy.
Keywords: CA-125; biomarker; linear mixed model; meta-analysis; ovarian cancer.