Biogenic silica accumulation in picoeukaryotes: Novel players in the marine silica cycle

Environ Microbiol Rep. 2023 Aug;15(4):282-290. doi: 10.1111/1758-2229.13144. Epub 2023 Mar 29.

Abstract

It is well known that the biological control of oceanic silica cycling is dominated by diatoms, with sponges and radiolarians playing additional roles. Recent studies have revealed that some smaller marine organisms (e.g. the picocyanobacterium Synechococcus) also take up silicic acid (dissolved silica, dSi) and accumulate silica, despite not exhibiting silicon dependent cellular structures. Here, we show biogenic silica (bSi) accumulation in five strains of picoeukaryotes (<2-3 μm), including three novel isolates from the Baltic Sea, and two marine species (Ostreococcus tauri and Micromonas commoda), in cultures grown with added dSi (100 μM). Average bSi accumulation in these novel biosilicifiers was between 30 and 92 amol Si cell-1 . Growth rate and cell size of the picoeukaryotes were not affected by dSi addition. Still, the purpose of bSi accumulation in these smaller eukaryotic organisms lacking silicon dependent structures remains unclear. In line with the increasing recognition of picoeukaryotes in biogeochemical cycling, our findings suggest that they can also play a significant role in silica cycling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Diatoms* / chemistry
  • Diatoms* / metabolism
  • Eukaryota
  • Oceans and Seas
  • Silicon / analysis
  • Silicon / metabolism
  • Silicon Dioxide* / chemistry

Substances

  • Silicon Dioxide
  • Silicon