Benzalkonium chloride-induced dry eye disease animal models: Current understanding and potential for translational research

Indian J Ophthalmol. 2023 Apr;71(4):1256-1262. doi: 10.4103/IJO.IJO_2791_22.

Abstract

Dry eye disease (DED) is an emerging health issue affecting people worldwide. There have been rapid advances in the development of novel molecules and targeted therapies for the treatment of DED in the recent past. For testing and optimizing these therapies, it is necessary to have reliable experimental animal models of DED. One such approach is the use of benzalkonium chloride (BAC). Several BAC-induced DED models of rabbits and mice have been described in literature. BAC induces high levels of proinflammatory cytokines in the cornea and conjunctiva, along with epithelial cell apoptosis and reduction of mucins, which leads to tear film instability, thereby successfully simulating human DED. The stability of these models directs whether the treatment is to be applied while BAC is being instilled or after its cessation. In this review, we summarize the previously described BAC animal models of DED and present original data on rabbit DED models created using 0.1%, 0.15%, and 0.2% BAC administration twice daily for two consecutive weeks. The 0.2% BAC model sustained DED signs for 3 weeks, while 0.1% and 0.15% models sustained DED signs for 1-2 weeks after BAC discontinuation. Overall, these models look promising and continue to be used in various studies to investigate the efficacy of therapeutic drugs for DED treatment.

Keywords: Animal models; benzalkonium chloride; cornea; dry eye disease; tears.

Publication types

  • Review

MeSH terms

  • Animals
  • Benzalkonium Compounds* / toxicity
  • Cornea
  • Disease Models, Animal
  • Dry Eye Syndromes* / chemically induced
  • Dry Eye Syndromes* / diagnosis
  • Dry Eye Syndromes* / drug therapy
  • Humans
  • Mice
  • Rabbits
  • Tears
  • Translational Research, Biomedical

Substances

  • Benzalkonium Compounds