The 100,000 Genomes Project (100KGP) diagnosed a quarter of recruited affected participants, but 26% of diagnoses were in genes not on the chosen gene panel(s); with many being de novo variants of high impact. However, assessing biallelic variants without a gene panel is challenging, due to the number of variants requiring scrutiny. We sought to identify potential missed biallelic diagnoses independent of the gene panel applied using GenePy - a whole gene pathogenicity metric. GenePy scores all variants called in a given individual, incorporating allele frequency, zygosity, and a user-defined deleterious metric (CADD v1.6 applied herein). GenePy then combines all variant scores for individual genes, generating an aggregate score per gene, per participant. We calculated GenePy scores for 2862 recessive disease genes in 78,216 individuals in 100KGP. For each gene, we ranked participant GenePy scores for that gene, and scrutinised affected individuals without a diagnosis whose scores ranked amongst the top-5 for each gene. We assessed these participants' phenotypes for overlap with the disease gene associated phenotype for which they were highly ranked. Where phenotypes overlapped, we extracted rare variants in the gene of interest and applied phase, ClinVar and ACMG classification looking for putative causal biallelic variants. 3184 affected individuals without a molecular diagnosis had a top-5 ranked GenePy gene score and 682/3184 (21%) had phenotypes overlapping with one of the top-ranking genes. After removing 13 withdrawn participants, in 122/669 (18%) of the phenotype-matched cases, we identified a putative missed diagnosis in a top-ranked gene supported by phasing, ClinVar and ACMG classification. A further 334/669 (50%) of cases have a possible missed diagnosis but require functional validation. Applying GenePy at scale has identified potential diagnoses for 456/3183 (14%) of undiagnosed participants who had a top-5 ranked GenePy score in a recessive disease gene, whilst adding only 1.2 additional variants (per individual) for assessment.