SARS-CoV-2 infection aggravates cigarette smoke-exposed cell damage in primary human airway epithelia

Virol J. 2023 Apr 11;20(1):65. doi: 10.1186/s12985-023-02008-z.

Abstract

Background: The coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide pandemic with over 627 million cases and over 6.5 million deaths. It was reported that smoking-related chronic obstructive pulmonary disease (COPD) might be a crucial risk for COVID-19 patients to develop severe condition. As cigarette smoke (CS) is the major risk factor for COPD, we hypothesize that barrier dysfunction and an altered cytokine response in CS-exposed airway epithelial cells may contribute to increased SARS-CoV-2-induced immune response that may result in increased susceptibility to severe disease. The aim of this study was to evaluate the role of CS on SARS-CoV-2-induced immune and inflammatory responses, and epithelial barrier integrity leading to airway epithelial damage.

Methods: Primary human airway epithelial cells were differentiated under air-liquid interface culture. Cells were then exposed to cigarette smoke medium (CSM) before infection with SARS-CoV-2 isolated from a local patient. The infection susceptibility, morphology, and the expression of genes related to host immune response, airway inflammation and damages were evaluated.

Results: Cells pre-treated with CSM significantly caused higher replication of SARS-CoV-2 and more severe SARS-CoV-2-induced cellular morphological alteration. CSM exposure caused significant upregulation of long form angiotensin converting enzyme (ACE)2, a functional receptor for SARS-CoV-2 viral entry, transmembrane serine protease (TMPRSS)2 and TMPRSS4, which cleave the spike protein of SARS-CoV-2 to allow viral entry, leading to an aggravated immune response via inhibition of type I interferon pathway. In addition, CSM worsened SARS-CoV-2-induced airway epithelial cell damage, resulting in severe motile ciliary disorder, junctional disruption and mucus hypersecretion.

Conclusion: Smoking led to dysregulation of host immune response and cell damage as seen in SARS-CoV-2-infected primary human airway epithelia. These findings may contribute to increased disease susceptibility with severe condition and provide a better understanding of the pathogenesis of SARS-CoV-2 infection in smokers.

Keywords: Airway epithelial cells; COVID-19; Cigarette smoking; SARS-CoV-2.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19*
  • Cigarette Smoking*
  • Humans
  • Pulmonary Disease, Chronic Obstructive*
  • Respiratory System
  • SARS-CoV-2