In solution, the Pacman chlorophosphane (2Cl) shows fast exchange of the endo/exo-orientation of the two P-Cl bonds in the molecule featuring cooperativity. Experimental and quantum mechanical investigations of the inversion on the phosphorus(III) centers reveal a crucial role of chloride ions in the dynamic process. To confirm the results, the homologous Pacman halogen-phosphanes 2X were prepared by halogen exchange reactions (X = F, Br, and I). Besides accelerated dynamic behavior for the heavier analogues, significant differences in the molecular structure are caused by the halogen exchange reactions, including the formation of an endo-endo substituted Pacman fluorophosphane as well as dicationic species by phosphorus halogen bond dissociation. The latter process can be regarded as redox isomerism since two PIII atoms in 2X become PV centers in the dications.