Aim: The aim of the current in vitro research was to evaluate the sealing capacity of three different agents employed for the repair of perforations at the furcation area.
Materials and methods: Recently 60 extracted human mandibular permanent molars having well apart plus fully formed roots, and intact furcation were chosen. The 60 samples were allocated at random to three groups of 20 samples: Group I: Furcation perforation repair by means of mineral trioxide aggregate (MTA)-Angelus, Group II: Furcal perforation repair using Biodentine, Group III: Furcal perforation repair by EndoSequence. The specimens were subjected to sectioning with a hard tissue microtome and the sectioned parts of the samples were then examined. The specimens were subjected to gold sputtering and visualizing beneath scanning electron microscope (SEM) at 2000× magnification for assessing the sealing capacity of the agents.
Results: The highest sealing capacity was noted with the use of Biodentine at 0.96 ± 0.10, in pursuit by EndoSequence use at 1.18 ± 0.14 and MTA-Angelus use at 1.74 ± 0.08. The disparity amid the three groups was statistically significant with p < 0.001.
Conclusion: In conclusion, it may be inferred that Biodentine exhibited the finest sealing capacity than EndoSequence and MTA- Angelus. It may thus be given consideration as a substance of preference for the repair of furcal perforation.
Clinical significance: Using biologically compatible substances may be suggested to amend perforations thereby decreasing the occurrence of inflammatory response in the neighboring tissues. The sealing capacity is a significant feature in supporting the result of a root canal treatment of a tooth.
Keywords: Furcal perforation; Root repair material; Scanning electron microscope Sealing ability..