Objective: Systemic lupus erythematosus (SLE) poses diagnostic challenges. We undertook this study to evaluate the utility of a phenotype risk score (PheRS) and a genetic risk score (GRS) to identify SLE individuals in a real-world setting.
Methods: Using a de-identified electronic health record (EHR) database with an associated DNA biobank, we identified 789 SLE cases and 2,261 controls with available MEGAEX genotyping. A PheRS for SLE was developed using billing codes that captured American College of Rheumatology SLE criteria. We developed a GRS with 58 SLE risk single-nucleotide polymorphisms (SNPs).
Results: SLE cases had a significantly higher PheRS (mean ± SD 7.7 ± 8.0 versus 0.8 ± 2.0 in controls; P < 0.001) and GRS (mean ± SD 12.2 ± 2.3 versus 11.0 ± 2.0 in controls; P < 0.001). Black individuals with SLE had a higher PheRS compared to White individuals (mean ± SD 10.0 ± 10.1 versus 7.1 ± 7.2, respectively; P = 0.002) but a lower GRS (mean ± SD 9.0 ± 1.4 versus 12.3 ± 1.7, respectively; P < 0.001). Models predicting SLE that used only the PheRS had an area under the curve (AUC) of 0.87. Adding the GRS to the PheRS resulted in a minimal difference with an AUC of 0.89. On chart review, controls with the highest PheRS and GRS had undiagnosed SLE.
Conclusion: We developed a SLE PheRS to identify established and undiagnosed SLE individuals. A SLE GRS using known risk SNPs did not add value beyond the PheRS and was of limited utility in Black individuals with SLE. More work is needed to understand the genetic risks of SLE in diverse populations.
© 2023 American College of Rheumatology.