Nanostructured cemented carbides with Co binders have shown excellent mechanical properties in various applications. Nevertheless, their corrosion resistance has shown to be insufficient in different corrosive environments, leading to premature tool failure. In this study, WC-based cemented carbide samples with different binders were produced using 9 wt% of FeNi or FeNiCo with the addition of Cr3C2 and NbC as the grain growth inhibitors. The samples were investigated using electrochemical corrosion techniques: the open circuit potential Ecorr, the linear polarization resistance (LPR), the Tafel extrapolation method, and the electrochemical impedance spectroscopy (EIS) at room temperature in the solution of 3.5% NaCl. Microstructure characterization, surface texture analysis, and instrumented indentation were conducted to investigate the influence of corrosion on the micro-mechanical properties and the surface characteristics of the samples before and after corrosion. The obtained results indicate a strong binder chemical composition's effect on the consolidated materials' corrosive behavior. Compared to the conventional WC-Co systems, a significantly improved corrosion resistance was observed for both alternative binder systems. The study shows that the samples with the FeNi binder are superior to those with the FeNiCo binder since they were almost unaffected when exposed to the acidic medium.
Keywords: FeNi; FeNiCo; alternative binder; corrosion; micromechanical properties; nanostructured carbides.