Non-specificity as the sticky problem in therapeutic antibody development

Nat Rev Chem. 2022 Dec;6(12):844-861. doi: 10.1038/s41570-022-00438-x. Epub 2022 Nov 14.

Abstract

Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids*
  • Antibodies* / therapeutic use
  • Hydrophobic and Hydrophilic Interactions

Substances

  • Antibodies
  • Amino Acids