Ni-rich layered oxides are the most promising cathodes for Li-ion batteries, but chemo-mechanical failures during cycling and large first-cycle capacity loss hinder their applications in high-energy batteries. Herein, by introducing spinel-like mortise-tenon structures into the layered phase of LiNi0.8 Co0.1 Mn0.1 O2 (NCM811), the adverse volume variations in cathode materials can be significantly suppressed. Meanwhile, these mortise-tenon structures play the role of the expressway for fast lithium-ion transport, which is substantiated by experiments and calculations. Moreover, the particles with mortise-tenon structures usually terminate with the most stable (003) facet. The new cathode exhibits a discharge capacity of 215 mAh g-1 at 0.1 C with an initial Coulombic efficiency of 97.5%, and capacity retention of 82.2% after 1200 cycles at 1 C. This work offers a viable lattice engineering to address the stability and low initial Coulombic efficiency of the Ni-rich layered oxides, and facilitates the implementation of Li-ion batteries with high-energy density and long durability.
Keywords: Ni-rich layered cathodes; fast lithium-ion transport; initial Coulombic efficiency; mortise-tenon structures; volume variations.
© 2023 Wiley-VCH GmbH.