The boundary-based assist-as-needed (BAAN) force field is widely used in robotic rehabilitation and has shown promising results in improving trunk control and postural stability. However, the fundamental understanding of how the BAAN force field affects the neuromuscular control remains unclear. In this study, we investigate how the BAAN force field impacts muscle synergy in the lower limbs during standing posture training. We integrated virtual reality (VR) into a cable-driven Robotic Upright Stand Trainer (RobUST) to define a complex standing task that requires both reactive and voluntary dynamic postural control. Ten healthy subjects were randomly assigned to two groups. Each subject performed 100 trials of the standing task with or without assistance from the BAAN force field provided by RobUST. The BAAN force field significantly improved balance control and motor task performance. Our results also indicate that the BAAN force field reduced the total number of lower limb muscle synergies while concurrently increasing the synergy density (i.e., number of muscles recruited in each synergy) during both reactive and voluntary dynamic posture training. This pilot study provides fundamental insights into understanding the neuromuscular basis of the BAAN robotic rehabilitation strategy and its potential for clinical applications. In addition, we expanded the repertoire of training with RobUST that integrates both perturbation training and goal-oriented functional motor training within a single task. This approach can be extended to other rehabilitation robots and training approaches with them.