Introduction: Mudskippers are a large group of amphibious fishes that have developed many morphological and physiological capacities to live on land. Genomics comparisons of chromosome-level genome assemblies of three representative mudskippers, Boleophthalmus pectinirostris (BP), Periophthalmus magnuspinnatus (PM) and P. modestus (PMO), may be able to provide novel insights into the water-to-land evolution and adaptation.
Methods: Two chromosome-level genome assemblies for BP and PM were respectively sequenced by an integration of PacBio, Nanopore and Hi-C sequencing. A series of standard assembly and annotation pipelines were subsequently performed for both mudskippers. We also re-annotated the PMO genome, downloaded from NCBI, to obtain a redundancy-reduced annotation. Three-way comparative analyses of the three mudskipper genomes in a large scale were carried out to discover detailed genomic differences, such as different gene sizes, and potential chromosomal fission and fusion events. Comparisons of several representative gene families among the three amphibious mudskippers and some other teleosts were also performed to find some molecular clues for terrestrial adaptation.
Results: We obtained two high-quality haplotype genome assemblies with 23 and 25 chromosomes for BP and PM respectively. We also found two specific chromosome fission events in PM. Ancestor chromosome analysis has discovered a common fusion event in mudskipper ancestor. This fusion was then retained in all the three mudskipper species. A loss of some SCPP (secretory calcium-binding phosphoprotein) genes were identified in the three mudskipper genomes, which could lead to reduction of scales for a part-time terrestrial residence. The loss of aanat1a gene, encoding an important enzyme (arylalkylamine N-acetyltransferase 1a, AANAT1a) for dopamine metabolism and melatonin biosynthesis, was confirmed in PM but not in PMO (as previously reported existence in BP), suggesting a better air vision of PM than both PMO and BP. Such a tiny variation within the genus Periophthalmus exemplifies to prove a step-by-step evolution for the mudskippers' water-to-land adaptation.
Conclusion: These high-quality mudskipper genome assemblies will become valuable genetic resources for in-depth discovery of genomic evolution for the terrestrial adaptation of amphibious fishes.
Keywords: Chromosome-level genome assembly; Comparative genomics; Mudskipper; Terrestrial adaptation; Water-to-land evolution; Whole genome sequencing.
Copyright © 2024. Production and hosting by Elsevier B.V.