Background: Anti-PD-(L)1 immunotherapy has emerged as a promising treatment approach for non-small cell lung cancer (NSCLC), though the response rates remain low. Pre-treatment response prediction may improve patient allocation for immunotherapy. Blood platelets act as active immune-like cells, thereby constraining T-cell activity, propagating cancer metastasis, and adjusting their spliced mRNA content.
Objective: We investigated whether platelet RNA profiles before start of nivolumab anti-PD1 immunotherapy may predict treatment responses.
Methods: We performed RNA-sequencing of platelet RNA samples isolated from stage III-IV NSCLC patients before treatment with nivolumab. Treatment response was scored by the RECIST-criteria. Data were analyzed using a predefined thromboSeq analysis including a particle-swarm-enhanced support vector machine (PSO/SVM) classification algorithm.
Results: We collected and processed a 286-samples cohort, separated into a training/evaluation and validation series and subjected those to training of the PSO/SVM-classification algorithm. We observed only low classification accuracy in the 107-samples validation series (area under the curve (AUC) training series: 0.73 (95% -CI: 0.63-0.84, n = 88 samples), AUC evaluation series: 0.64 (95% -CI: 0.51-0.76, n = 91 samples), AUC validation series: 0.58 (95% -CI: 0.45-0.70, n = 107 samples)), employing a five-RNAs biomarker panel.
Conclusions: We concluded that platelet RNA may have minimally discriminative capacity for anti-PD1 nivolumab response prediction, with which the current methodology is insufficient for diagnostic application.
Keywords: Blood platelets; RNA-sequencing; immunotherapy; nivolumab.