The ability of emotion regulation under stress is of crucial importance to psychosocial health. Yet, the dynamic function of stress hormones for the cognitive control of emotions over time via non-genomic and genomic cortisol effects remains to be elucidated. In this randomized, double-blind, placebo-controlled neuroimaging experiment, 105 participants (54 men, 51 women) received 20 mg hydrocortisone (cortisol) or a placebo either 30min (rapid, non-genomic cortisol effects) or 90min (slow, genomic cortisol effects) prior to a cognitive reappraisal task including different regulatory goals (i.e., downregulate vs. upregulate negative emotions). On the behavioral level, cortisol rapidly reduced and slowly enhanced emotional responsivity to negative pictures. However, only slow cortisol effects improved downregulation of negative emotions. On the neural level, cortisol rapidly enhanced, but slowly reduced amygdala and dorsolateral prefrontal activation as well as functional connectivity between both structures in the down- minus upregulate contrast. This interaction speaks for an effortful but ineffective regulation of negative emotions during rapid cortisol effects and improved emotion regulation capacities during slow cortisol effects. Taken together, these results indicate a functional shift of cortisol effects on emotion regulation processes over time which may foster successful adaptation to and recovery from stressful life events.
Keywords: Cognitive reappraisal; Functional magnetic resonance imaging; Genomic cortisol effects; Glucocorticoids; Stress hormones.
© 2023 The Authors.