Objective: Microanastomosis is one of the most technically demanding and important microsurgical skills for a neurosurgeon. A hand motion detector based on machine learning tracking technology was developed and implemented for performance assessment during microvascular anastomosis simulation.
Methods: A microanastomosis motion detector was developed using a machine learning model capable of tracking 21 hand landmarks without physical sensors attached to a surgeon's hands. Anastomosis procedures were simulated using synthetic vessels, and hand motion was recorded with a microscope and external camera. Time series analysis was performed to quantify the economy, amplitude, and flow of motion using data science algorithms. Six operators with various levels of technical expertise (2 experts, 2 intermediates, and 2 novices) were compared.
Results: The detector recorded a mean (SD) of 27.6 (1.8) measurements per landmark per second with a 10% mean loss of tracking for both hands. During 600 seconds of simulation, the 4 nonexperts performed 26 bites in total, with a combined excess of motion of 14.3 (15.5) seconds per bite, whereas the 2 experts performed 33 bites (18 and 15 bites) with a mean (SD) combined excess of motion of 2.8 (2.3) seconds per bite for the dominant hand. In 180 seconds, the experts performed 13 bites, with mean (SD) latencies of 22.2 (4.4) and 23.4 (10.1) seconds, whereas the 2 intermediate operators performed a total of 9 bites with mean (SD) latencies of 31.5 (7.1) and 34.4 (22.1) seconds per bite.
Conclusions: A hand motion detector based on machine learning technology allows the identification of gross and fine movements performed during microanastomosis. Economy, amplitude, and flow of motion were measured using time series data analysis. Technical expertise could be inferred from such quantitative performance analysis.
Keywords: artificial intelligence; cerebral revascularization; hand motion tracking; machine learning; microanastomosis; microneurosurgery; surgical motion analysis.